首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   40篇
  国内免费   11篇
测绘学   44篇
大气科学   110篇
地球物理   199篇
地质学   281篇
海洋学   64篇
天文学   82篇
综合类   1篇
自然地理   56篇
  2023年   4篇
  2022年   5篇
  2021年   22篇
  2020年   42篇
  2019年   20篇
  2018年   28篇
  2017年   30篇
  2016年   44篇
  2015年   33篇
  2014年   41篇
  2013年   43篇
  2012年   43篇
  2011年   64篇
  2010年   50篇
  2009年   56篇
  2008年   53篇
  2007年   34篇
  2006年   27篇
  2005年   16篇
  2004年   24篇
  2003年   21篇
  2002年   8篇
  2001年   16篇
  2000年   13篇
  1999年   9篇
  1998年   11篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   11篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有837条查询结果,搜索用时 156 毫秒
1.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
2.
3.
4.
Seventy-seven gem opals from ten countries were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) through a dilution process, in order to establish the nature of the impurities. The results are correlated to the mode of formation and physical properties and are instrumental in establishing the geographical origin of a gem opal. The geochemistry of an opal is shown to be dependant mostly on the host rock, at least for examples from Mexico and Brazil, even if modified by weathering processes. In order of decreasing concentration, the main impurities present are Al, Ca, Fe, K, Na, and Mg (more than 500 ppm). Other noticeable elements in lesser amounts are Ba, followed by Zr, Sr, Rb, U, and Pb. For the first time, geochemistry helps to discriminate some varieties of opals. The Ba content, as well as the chondrite-normalized REE pattern, are the keys to separating sedimentary opals (Ba > 110 ppm, Eu and Ce anomalies) from volcanic opals (Ba < 110 ppm, no Eu or Ce anomaly). The Ca content, and to a lesser extent that of Mg, Al, K and Nb, helps to distinguish gem opals from different volcanic environments. The limited range of concentrations for all elements in precious (play-of-color) compared to common opals, indicates that this variety must have very specific, or more restricted, conditions of formation. We tentatively interpreted the presence of impurities in terms of crystallochemistry, even if opal is a poorly crystallized or amorphous material. The main replacement is the substitution of Si4+ by Al3+ and Fe3+. The induced charge imbalance is compensated chiefly by Ca2+, Mg2+, Mn2+, Ba2+, K+, and Na+. In terms of origin of color, greater concentrations of iron induce darker colors (from yellow to “chocolate brown”). This element inhibits luminescence for concentrations above 1000 ppm, whereas already a low content in U (≤ 1 ppm) induces a green luminescence.  相似文献   
5.
Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic–anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π* resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ* region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent with aromatic-ring cleavage and polymerization. These results further substantiate that the presence of catechol, O2 (aq) causes both the oxidation of structural Ce3+ and the transformation of catechol to more complex organic molecules. Scanning Transmission X-Ray Microscopy measurements at the C K and Ce M4,5 edges indicate three dominant organic species, varying in complexity and association with the inorganic phase. Untransformed catechol is loosely associated with CeO2, whereas more complex organic molecules that exhibit lower aromaticity and stronger CO π* resonances of carboxyl-C and carbonyl-C groups are only found in association with the grains. These results further serve as basis to postulate that, in the presence of O2, CeO2 can mediate the oxidative polymerization of catechol to form higher molecular weight polymers. The present work provides evidence for a pathway of biologically-induced, non-enzymatic oxidation of cerium and formation of small CeO2 particles at room temperature. These findings may have implications for carbon cycling in natural and cerium-contaminated soils and aqueous environments.  相似文献   
6.
We have combined metal-silicate partitioning data from the literature with new experimental results at 1.5-8 GPa and 1480-2000 °C to parameterize the effects of pressure, temperature and composition on the partitioning of V, Cr and Nb between liquid Fe metal (with low S and C content) and silicate melt.Using information from the steelmaking literature to correct for interactions in the metal phase, we find that, for peridotitic silicate melts, metal-silicate partition coefficients are given by:
  相似文献   
7.
Dissolved tetrafluoromethane (CF4) and sulfur hexafluoride (SF6) concentrations were measured in groundwater samples from the Eastern Morongo Basin (EMB) and Mojave River Basin (MRB) located in the southern Mojave Desert, California. Both CF4 and SF6 are supersaturated with respect to equilibrium with the preindustrial atmosphere at the recharge temperatures and elevations of the Mojave Desert. These observations provide the first in situ evidence for a flux of CF4 from the lithosphere. A gradual basin-wide enhancement in dissolved CF4 and SF6 concentrations with groundwater age is consistent with release of these gases during weathering of the surrounding granitic alluvium. Dissolved CF4 and SF6 concentrations in these groundwaters also contain a deeper crustal component associated with a lithospheric flux entering the EMB and MRB through the underlying basement. The crustal flux of CF4, but not of SF6, is enhanced in the vicinity of local active fault systems due to release of crustal fluids during episodic fracture events driven by local tectonic activity. When fluxes of CF4 and SF6 into Mojave Desert groundwaters are extrapolated to the global scale they are consistent, within large uncertainties, with the fluxes required to sustain the preindustrial atmospheric abundances of CF4 and SF6.  相似文献   
8.
A simulation of a chronic input of petroleum into an estuarine environment was investigated using the facilities at the Marine Ecosystems Research Laboratory at the University of Rhode Island. An oil-water dispersion of No. 2 fuel oil was added to the system (twice weekly for 24 weeks) and the saturated hydrocarbons from this oil were measured in suspended material and sediments. After the initial chronic oil addition, trace amounts of hydrocarbons were detected in the sediments within two weeks, but substantial accumulation was not detected for approximately 135 days. The oil appeared to enter the sediment via the suspended material, with most of the saturated hydrocarbons associated with smaller size sediment particles (< 45 μm to > 0·3 μm). With time, the fuel oil saturated hydrocarbons in the sediments were mixed to a depth of 3 to 4 cm. Although only 12% of the total saturated hydrocarbons added to the system were found in the sediments, these hydrocarbons appear to be relatively stable and were still detectable in these sediments for at least six months after the last oil addition.  相似文献   
9.
We report a ten-year study of the abundance and activity of megabenthos on the Porcupine Abyssal Plain, northeast Atlantic, together with observations on the occurrence of phytodetritus at the deep-sea floor (4850 m). Using the Southampton Oceanography Centre time-lapse camera system, ‘Bathysnap’, we have recorded a radical change in the abundance and activity of megabenthos between the two periods of study (1991–1994 and 1997–2000). In 1991–1994, the larger megabenthos occurred at an abundance of c. 71.6/ha and were dominated by large holothurians. In addition, there were very substantial populations of smaller megabenthic ophiuroids (c. 4979/ha). Together, the total megabenthos are estimated to track over some 17 cm2/m2/d (exploiting 100% of the surface of the seabed in c. 2.5 years). In 1997–2000, the larger megabenthos increased to an abundance of c. 204/ha and were joined by exceptional numbers of a small holothurian species (Amperima rosea, 6457/ha) and ophiuroids (principally Ophiocten hastatum, 53,539/ha). The total megabenthos population was tracking at an estimnated rate of c. 247 cm2/m2/d (exploiting 100% of seabed in just 6 weeks). Coincident with these increases in the abundance and activity of the megabenthos, there were apparently no mass depositions of aggregated phytodetritus to the seabed in the summers of 1997–1999. Mass occurrences of phytodetritus had been noted during the summer months of the three years previously studied (1991, 1993 and 1994), with covering between 50 and 96% of the sediment surface. There is a statistically significant (p<0.02) negative correlation between maximum extent of this seabed cover of phytodetritus and seabed tracking by megabenthos. Additional studies [Lampitt et al., Progr. Ocean. 50 (2001)], indicate that there were no substantial changes in surface ocean primary productivity, in export flux, or in the composition of the flux that might otherwise account for the apparent absence of observable concentrations of phytodetritus during the summers of 1997–1999. We postulate that the marked increase in megabenthic tracking activity resulted in the removal (via consumption, disaggregation, burial etc.) of the bulk of the incoming phytodetrital flux during these years. A simple conceptual model, based on the apparent phytodetrital fluxes observed in 1991 and 1993, suggests that the megabenthos tracking rates estimated for 1997–1999 are sufficient to account for near-total removal of this flux. However, we are not able to estimate other processes removing phytodetritus (i.e. other elements of the benthos) that may also have increased between 1991–1994 and 1997–1999. Other independent studies [e.g. Ginger et al., Progr. Ocean. 50 (2001)] of flux constituents support the possibility that just a few species of megabenthos (e.g. A. rosea, and O. hastatum) could well have consumed a major proportion of the incoming flux and so substantially modified the composition of the organic matter available to other components of the benthos.  相似文献   
10.
Chlorophyll and carotenoid pigments were determined from the gut sediments of five species of bathyal holothurian in the NE Atlantic, sampled shortly after the spring/summer phytoplankton bloom in 2001 and prior to the spring bloom in 2002. Three species, Laetmogone violacea, Paroriza pallens and Bathyplotes natans, sampled within a similar depth range (900–1100 m) in the summer of 2001 showed significant differences in their chlorophyll and carotenoid pigment concentrations. This suggests they may select for slightly different components from the available food resource. Four species sampled in early spring 2002, Laetmogone violacea, Paroriza pallens, Benthogone rosea and Benthothuria funebris, also had significant differences in their pigment concentrations. These species were sampled over a wider depth range (1000–3100 m) showing a bathymetric trend in pigment concentrations. There was a distinct seasonal change in the composition and concentration of the pigments, linked to a reduction in the availability of fresh organic material during autumn and winter periods.Ovarian tissue was also examined. The carotenoid pigments found in the ovary also occurred in the OM ingested by the holothurians. The dominant gonadal carotenoid pigments were β-carotene, echinenone and zeaxanthin. The potential for using these carotenoids to gain a competitive advantage through selectivity of chlorophyll and carotenoid pigment biomarkers are discussed in relation to competition for food resources by deposit-feeders. The results were also compared with selectivity in abyssal species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号